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In  a previous paper (Jensen & Pedley 1989) a model was analysed describing the 
effects of longitudinal wall tension and energy loss through flow separation on the 
existence and nature of steady flow in a finite length of externally pressurized, 
elastic-walled tube. The stability of these steady flows to small time-dependent 
perturbations is now determined. A linear analysis shows that the tube may be 
unstable to at least three different modes of oscillation, with frequencies in distinct 
bands, depending on the governing parameters ; neutral stability curves for each 
mode are calculated. The motion of the separation point a t  a constriction in the tube 
appears to play an important role in the mechanism of these oscillations. A weakly 
nonlinear analysis is used to examine the instabilities in a neighbourhood of their 
neutral curves and to investigate mode interactions. The existence of multiple 
independent oscillations indicates that very complex dynamical behaviour may 
occur. 

1. Introduction 
The self-excited oscillations which occur in externally pressurized collapsible tubes 

are of interest both physiologically, for example as a possible source of the noises 
heard when a cuff is inflated around the upper arm during sphygmomanometry - the 
so-called ‘ Korotkoff sounds ’ - and fluid dynamically, where many questions 
concerning the nature of three-dimensional, unsteady, separating flows must be 
answered. These oscillations involve the interaction of a high-Reynolds-number 
internal flow and the elastic tube walls: in the case of airways in the lung they 
typically take the form of small-amplitude, high-frequency wall flutter causing 
wheezing ; for tubes in which the fluid inertia is much greater than the wall inertia 
(such as blood vessels), they may involve larger, lower-frequency variations of 
pressures, flow rates and the tube cross-sectional area. In  many experiments designed 
to mimic physiological systems (Conrad 1969; Brower & Scholten 1975; Bonis & 
Ribreau 1978; Bertram, Raymond & Pedley 1990a,b), in which a segment of 
collapsible tube is mounted between two rigid tubes and is enclosed in a pressurized 
chamber (see figure l ) ,  a remarkable variety of unsteady behaviour has been 
observed even using steady controlling parameters. Bertram et al. (1990a, b )  describe 
features typical of a complex dynamical system : many oscillations were highly 
nonlinear ; often the transitions between different oscillatory regimes displayed 
hysteresis ; unsteady behaviour could be extremely sensitive to small variations in 
the governing parameters ; and the behaviour frequently appeared to be chaotic, 
although it was not possible to confirm this conclusively from Bertram’s data. It is 
therefore desirable to  provide a relatively simple mathematical description of this 
experiment, with a view to obtaining an improved understanding of the mechanism 
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FIGURE 1. The conventional experimental apparatus : an elastic tube of non-dimensional length A 
and cross-sectional area a(s, t )  is mounted between two rigid tubes and is enclosed in a pressurized 
chamber. The externally controlled parameters are the chamber pressure p,, the upstream reservoir 
pressure pr and the resistances T, ,  7, and inertances A,, A, of the upstream and downstream rigid 
tubes; the system is open to the atmosphere downstream. 

of a t  least some of the oscillations, and also to develop a picture of the detailed 
bifurcation structure of the system. 

The model that  will be used in this paper is based upon that devised by Cancelli 
& Pedley (1985, hereinafter referred to as I), which is a one-dimensional description 
of the flow in a finite length of collapsible tube in which the tube elasticity is 
described by a simple ‘tube law ’, relating the non-dimensional tube cross-sectional 
area a(x,t) (see figure 1) to the transmural pressure (the internal pressure p(x,t) 
minus the external chamber pressure p e ) ,  coupled with a description of longitudinal 
tension (see below). The important features of such a model were described in I ,  but 
are summarized again here. (i) It takes account of the energy loss associated with a 
gradually broadening jet which is formed (at high Reynolds numbers) downstream 
of a constriction in the tube: such losses were found to be necessary to predict self- 
excited oscillations in the ‘lumped-parameter ’ models such as that of Bertram & 
Pedley (1982). (ii) It describes the influence of the upstream and downstream rigid 
tubes (see figure 1 )  : experimentally these have been shown to have a very significant 
effect on unsteady behaviour (Conrad 1969; Bertram et al. 1990a); again this was 
predicted by the lumped-prtrameter models. (iii) Since it is a one-dimensional model 
(which the lumped-parameter models are not), it describes elastic wave propagation. 
The importance of this effect was demonstrated by experiments such as those by 
Brower & Scholten (1975), who found that instability occurred as soon as the flow 
‘choked ’ ; they associated the loss of steady flow with the flow speed u(x, t) at  some 
point along the tube exceeding the speed c(x, t )  of small-amplitude pressure waves in 
the tube wall. 

A fundamental feature of the model in I is the description of constant longitudinal 
wall tension, which makes pressure waves propagate dispersively. Jensen & Pedley 
(1989, hereinafter referred to  as 11) showed that the presence of tension in steady 
flows in which there is no energy loss allows choking, with the disappearance of 
steady solutions, not precisely when u > c but rather a t  some flow rate which also 
depends on the degree of longitudinal tension and on the tube length. It was also 
shown in I1 that the introduction of a model of energy loss through flow separation 
has a profound effect on the nature of steady solutions : choking no longer occurs, and 
a steady flow exists for all flow rates. Using the steady solutions predicted by this 
model, the relation between the pressure drop down the tube and the flow rate was 
calculated, and qualitatively this compared well with experiment. 

The success of the model used in I1 in describing steady, separated flows suggests 
that i t  will also describe a number of the important characteristics of unsteady flows. 
(Of course with a one-dimensional model it will not be possible to describe wall 
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flutter, for example.) Therefore the effect of introducing infinitesimally small, time- 
dependent perturbations to the solutions calculated in I1 will be considered, to 
determine the linear stability of these steady flows. It will be found that the tube is 
unstable to a number of different modes of oscillation, depending on the tube 
geometry and the governing parameters. A weakly nonlinear analysis will be used to 
describe first how small-amplitude oscillations develop as a single parameter is varied 
and a steady solution becomes unstable, and secondly how two independent modes 
of oscillation interact with one another at particular points in a two-dimensional 
parameter space. 

This largely mathematical approach is complementary to the numerical study in 
I, as it allows a much broader range of parameter space to be examined. The 
calculations in this paper and those in I also differ in another important respect : the 
location of the separation point. Self-excited oscillations will be shown to arise if it 
is assumed, for example, that separation always occurs where the tube area is 
minimum. In I, on the other hand, it was possible to obtain large-scale (and 
presumably experimentally significant) oscillations only if the separation point was 
assumed to move hysteretically in response to a changing adverse pressure gradient 
just beyond the constriction. A mechanism (first proposed in I) will be described that 
demonstrates how motion of the separation point influences unsteady behaviour, 
while showing that hysteresis is not an essential part of this process. 

There have been other numerical studies analysing different models of unsteady 
flow in collapsible tubes. Following the approach of I, but including variation of 
longitudinal tension with time, Matsuzaki & Matsumoto (1989) found complicated 
unsteady solutions of the governing equations. However, the analysis presented here 
suggests that this additional factor is not a prerequisite for complex behaviour. 
Walsh, Sullivan & Hansen (1988) used a Lagrangian formulation of the mechanics of 
an elastic membrane, and included the effects of wall inertia, to describe flow in a 
one-dimensional model of the trachea. Although they ignored all dissipative effects, 
they were able to obtain flutter-like oscillations; these appear to arise through a 
coupling between transverse and longitudinal strain. 

With the exception of other flutter studies, few authors have performed linear 
stability calculations. In I, a finite-difference scheme was used to determine the 
stability of some steady solutions, but the findings were dependent on the type of 
differencing used. This difficulty will be avoided by the use of a shooting technique. 
Reyn (1988) considered the stability of an idealized steady flow (a uniform 
cylindrical elastic tube mounted in the conventional apparatus), but he neglected to 
incorporate any energy loss or longitudinal wall-tension in his model. Thus he could 
examine only subcritical flow (u < c ) ,  finding that it is linearly stable whenever there 
is non-zero damping in the rigid parts of the system. The conclusions of this study 
will be much more general in that it is not restricted to an artificial steady flow or 
to a small range of flow rates. 

The model and the steady flows it predicts are briefly reviewed in $2, and the linear 
stability analysis of these steady solutions is presented in $3. The weakly nonlinear 
analysis in $4 is extended in $5  to examine mode interactions at codimension-2 
bifurcation points in parameter space. It is demonstrated in the final section ($6) that 
the linear and weakly nonlinear theories describe many of the significant features of 
the experiments of Bertram et al. (1990a, b)  with reasonable qualitative accuracy. In 
Appendix A, an explanation is offered of the large regions of unattainable parameter 
space observed by Bertram et al. (1990 b )  in terms of a static bifurcation of the steady 
solutions. A more complete description of fully nonlinear and perhaps chaotic 
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behaviour (such as the interaction of three independent oscillations) must await 
further numerical investigations. 

2. An outline of the model and its steady solutions 
The elastic properties of the tube are described using a ‘tube law’, which relates 

the transmural pressure to  the tube’s non-dimensional cross-sectional area a(x,  t ) .  In  
the absence of longitudinal tension, a good approximation for a uniform tube 
(Shapiro 1977) is 

1-a-t if a <  1 
k(a-1) if a >  1; 

p - p ,  = P(a) = 
I 

pressure has been non-dimensionalized with the wall bending stiffness K,. The tube 
has an unstressed circular cross-section when a = 1 ; for positive transmural pressure 
i t  maintains a circular shape but has very low compliance (k is some large constant, 
which is taken in these calculations to equal 45, the value corresponding to the 
experiments of Bertram et al. 1990a, b) .  As the transmural pressure decreases below 
zero the cross-section changes from a circular to an elliptical shape ; then the opposite 
walls come into contact so that when p - p ,  is very low only two very narrow 
channels remain open. 

Longitudinal tension in the tube wall is related to  the transmural pressure through 
the longitudinal wall curvature. Assuming first that  the tube may be represented by 
a pair of parallel flat membranes (McClurken et al. 1981), and secondly that a varies 
slowly with the longitudinal coordinate x (see 11), the effects of constant longitudinal 
wall tension are approximated by modifying (2.1) as 

p-po,  = 9(a)- iaxz .  (2 .2 )  

By incorporating the dimensional tension T into a lengthscale = (Do T/K,)i, where 
Do is the diameter of the tube, the non-dimensional tension has been set equal to 1. 
This means that the parameter A, which is proportional to the dimensional tube 
length, is also proportional to T-4. 

Following the non-dimensionalization scheme of 11, the mass and momentum 
conservation equations for unsteady one-dimensional flow in a collapsible tube are 

at + (ua), = 0, (2.3) 

Ut+XuUz = -pz .  (2.4) 
(Time is scaled by z/co, where co is the wave speed (K,/p)i and p is the fluid density.) 
u(x,t) is the axial velocity averaged over the cross-section. The effect of frictional 
forces is assumed to  be negligible: this is a reasonable assumption except when the 
tube is severely collapsed along much of its length. The only dissipation in the 
collapsible segment is represented by the factor x in the inertia term of (2.4), which 
was introduced in I to describe the energy loss that occurs in the region downstream 
of a constriction in the tube in which there is a gradually broadening, turbulent jet. 
For a steady high-Reynolds-number flow it  is reasonable to  assume (as in 11) that the 
jet separates a t  a point x = X which is coincident with X, ,  the point of minimum 
area; this is, of course, also Xu, the point of maximum velocity and X,, the point of 
minimum pressure. Then it is assumed that 

x = 1  when O<x<X, 
O < x < 1  when X<x<A. (2 .5)  
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FIGURE 2. Examples of steady tube shapes when the flow is fully attached, with P = 1, h = 1 and 
k = 45 : the subcritical solution (solid curve) and the supercritical solution (tightly dashed curve) 
when Q = 1.1 ( < Q , ) ;  the dilated solution when Q = 9.0 (> Q b )  (loosely dashed curve). 

X 

A parallel-sided jet in the downstream segment of the collapsible tube is represented 
by x = 0 for X < x < A ; for a fully attached flow with no energy loss, x = 1 for X < 
x < A. In  the calculations for separated flow x will be taken to be 0.2 beyond the 
separation point, which allows partial, but not complete pressure recovery in this 
region: although 0.2 is chosen arbitrarily, computations in I and the theory of I1 
suggest that its precise value is not qualitatively significant. In unsteady flow, it must 
be remembered that X,, Xu and X, are not generally coincident, and the assumptions 
either that X = X, or that X = Xu will be compared below. For the small-amplitude 
oscillations considered in this paper, however, X ,  and Xu remain sufficiently close to 
one another for the choice of separation criterion not to have any significant 
qualitative effect upon the results. 

The boundary conditions for a typical experiment are that the tube is held open 
at both ends, i.e. 

and that the pressures at either end of the collapsible segment match those 
determined by the upstream reservoir pressure p ,  (see figure l) ,  and the resistances 
qt and inertances A, of the upstream (i = 1) and downstream (i = 2) rigid tubes: 

a(0,t) = a(A,t) = 1, (2.6) 

p(O,t)  = P, = p , - ~ U 2 ( 0 , ~ ) - q l U 2 ( 0 , t ) - - l ~ , ( 0 , t ) ,  

p(A, t )  = p ,  = q,u2(A, t )+Azu, (A , t ) .  
(2.7) 

(2.8) 

The subscript 0 will be used to denote the steady solutions a,(x), uo(x) of 
(2.2)-(2.8). It was shown in I1 that the natural way to parameterize such flows was 
with the steady flow rate Q = uoao (which arises immediately from 2.3) and the 
downstream negative transmural pressure P = p ,  -p ,  ; it will be assumed below that 
P 2 0. The steady solutions are described in the following two subsections. 

2.1. Ful ly  attached flow 

If there is no energy dissipation within the tube (i.e. x = 1 in (2.4) for 0 < x < A ) ,  
then p ,  = p ,  and (with the exception of some wave-like states which are of little 
physical significance) all steady flows have a symmetric configuration, either 
collapsed or dilated along the length of the tube, with ao(x) taking its extremum 
value A ,  at x = ;A. Examples of the simplest states are shown in figure 2. 

To describe the possible steady flows, consider fixing P = 1, say. The solutions may 
be represented by plotting A ,  as a function of Q ,  as on figure 4 below. Bifurcations of 
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FIGURE 3. Examples of the steady solutions when the flow separates beyond a constriction (at 
2 = X,) in the tube, with P = 8, A = 1, x = 0.2 and k = 45: when Q = 0.5 (the solid curve) and 
Q = 1.556 (the tightly dashed curve) the flow rates satisfy 0 < Q < QJ; when Q = 4.0 [ > Q,)  the 
tube is dilated a t  its upstream end over the range 0 < z < & (the loosely dashed curve). 

X 

these solutions occur at Q = 0, Q,(P), Q,(P) and Q,(P), where 0 < Q, < Q, < Q,. For 
0 < Q < Q, (Q = Q,, P = 1 lies on the curve h = I,,, on figure 8 in 11), two collapsed 
solutions exist, represented by the solid and dashed curves in figure 4 (a)  ; examples 
of the corresponding tube shapes are plotted in figure 2 as the solid and the tightly 
dashed curves respectively. The less constricted state (the solid curve in figure 2 )  is 
identified as ‘subcritical’, and the more constricted (the tightly dashed curve) as 
‘supercritical’, although it is important to realize that in neither case is there a 
simple relation between the flow speed and the propagation speed of pressure waves, 
because the system is dispersive. The reason for this identification is that as Q 
increases the two solutions become more alike, until a t  Q = Q, they are identical. 
Thereafter they vanish, and there is a range of flow rates, Q, < Q < Q,(Q = Q,, 
P = 1 lies on the curve h = Imin in figure 8 of II), for which no steady solutions exist. A 
numerical computation in I, following the behaviour of the tube from some arbitrary 
initial condition, found that for a flow rate in this range the tube area decreases to 
zero a t  some point along the tube in finite time, suggesting that complete collapse 
such as this (‘ choking ’) is inevitable across this range of flow rates. For Q > Q, a new 
pair of solutions arise with the tube dilated along its length, which are represented 
on figure 4(b) with a solid and a dashed curve. The latter only extends to Q = 
Q, (Q = Q,,P = 1 lies on the curve h = I @ , )  on figure 16 of 11; this curve is also 
plotted as Q = Q,(P) on figure 5 b  below), where other bifurcations to wave-like 
solutions occur. An example of a dilated solution on the solid curve in figure 4 ( b )  
(when Q = 9) is shown as the loosely dashed curve in figure 2. 

2.2. Separated flow 

As above, the steady solutions in which there is energy loss through flow separation 
(i.e. x in (2.4) changes a t  the separation point according to (2.5)) are best described 
by fixing P (at 8, say) and increasing Q from zero. Unlike the previous case, however, 
a unique, separated solution with the tube collapsed a t  its downstream end exists for 
all flow rates between zero and &,(P). Examples of this solution are plotted for three 
values of Q in figure 3. For small Q (the solid curve in figure 3, for which Q = 0.5) 
this solution resembles the ‘ subcritical ’ solution of the fully attached case, having its 
area minimum (the separation point in steady flow) near its midpoint. As Q increases, 
this solution begins to bulge at its upstream end (e.g. the tightly dashed curve on 
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figure 3) and the separation point X, moves downstream. When Q = Q,(P), where 
0 < Q,(P) < &,(P) (& = QJ, P = 8 lies on the curve A = I @ , )  on figure 16 of 11; the 
curve Q = Q,(P) is also plotted on figure 5 b  below), this bulge has grown such that 
a,,(O) = 0; for Q > Qj the tube is dilated for 0 < x < Y,, say, and collapsed for y0 < 
x < A. An example of such a state is plotted as the loosely dashed curve in figure 3, 
for which Q = 4. The ‘jump point’ Y ,  (shown on figure 3, so-called because the 
gradient of the tube law (2.1) is discontinuous across it) moves downstream as the flow 
rate rises, and approaches x = A as Q --f Q,. For larger flow rates the tube can switch 
to a fully dilated state (by jumping onto the solid solution branch in figure 4b) in 
which there is no energy loss. Note that the jump in the gradient of the tube law (2.1) 
and in x (2.5) cause discontinuities in the third and fourth derivatives of ao(x) (and 
uo(x)) at Y, and X ,  respectively. 

A more global description of these steady, separated solutions is provided by figure 
5(b) below. This is a map of the (Q,P)-plane in the case A = 1, k = 45 and x = 0.2, 
showing contours of the tube minimum area A ,  (the tightly dashed curves), of the 
position of the separation point X ,  (the loosely dashed curves) and two solid curves, 
Q = &,(P) (along which Y ,  = 0) and Q = Qa(P) (Y ,  = A) .  This figure will be considered 
further in $3.5. 

3. Linear stability theory 
3.1. Formulation 

In  this section the stability of the steady solutions ao(x),  uo(x) of (2.2)-(2.8) to small 
time-dependent perturbations will be analysed. The tube area and fluid velocity may 
be written as 

a(x, t )  = ao(x) +a’($, t ) ,  
ufz, t )  = uo(x) + u’(x, t ) .  

(3.1) 

(3.2) 

Substituting these expressions into (2.2)-(2.4), eliminating the pressure and removing 
the time-independent terms which govern the steady solution leads to 

a; + (u’a, + u, a’), = - (u’a’),, (3.3) 

(3.4) 
U;+X(U,U’)~+ (a’9’(ao))z-&~zz = -$~(~’2)Z-(+‘29’’(a0)+&’39’”(a,)+. . .),, 

with boundary conditions (from (2.6)-(2.8)) 

a’(0, t )  = 0, 

a’(A, t )  = 0, 

-~a;,(o,t)+(++~l)2u,(0)u’(0, t)+A,uI(O,t) = - (++?&P(O,  t ) ,  

-$&(A, t ) - 2 y 2  u,(A) u’(A, t )  -A2  u,’(A, t )  = q2 d 2 ( A ,  t ) .  
(3.7) 

(3.8) 

All the nonlinear terms have been taken to the right-hand sides of (3.3)-(3.8) ; they 
will be neglected in the remainder of $3. 

Recall that, if all energy losses are ignored, x = 1 in (3.4) along the length of the 
tube. However, if the flow is assumed to separate, then because of the two 
discontinuities inherent in the model - the jump in x (2.5) and in the gradient of the 
tube law (2.1) - two internal .boundary points must be considered explicitly: the 
separation point X ( t ) ,  which is assumed to be either the point of minimum area X,(t) 
or the point of maximum velocity X,(t), so that either 

a z ( X ,  t )  = 0 or u,(X, t )  = 0;  (3.9a, b )  
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and, if it exists, the jump point Y(t)  at  the downstream end of a bulge in the tube 
where 

a(Y,t)  = 1.  (3.10) 

Equations ( 3 . 9 ~  or b)  and (3.10) can be used to calculate the perturbation of each 
point about its steady position (X, or Y,,) as a(z,  t )  varies according to (3.1). A t  each 
point continuity of area, velocity and pressure must be ensured. So at  the separation 
point, for example, the first-order terms in the expansion of conditions such as 
[a(z,  t)];! = 0 are derived, which requires expansion first of a about its steady value 
using (3.1), and then expansion ofX about X,. Using either ( 3 . 9 ~ )  or (3.9 b) ,  it is easily 
shown that 

[u’, a’, a:, a:,]2t = 0. (3.11) 

Accordingly the predictions of linear theory are independent of the choice of the 
position of the separation point. The steady-state area has a discontinuous fourth 
derivative at  X, (see 11), and correspondingly the lowest discontinuous derivative of 
a’ is the third, representing a jump in the perturbation pressure gradient. A similar 
argument must be followed at the jump point, where consideration of the velocity 
and area imply that 

[u’, a’, a:12+, (3.12) 

while to ensure that the pressure (2.2) is continuous, one must take 

[a’9’(a0)-~a~,]2+ = 0. (3.13) 

Unfortunately when a,,(0) = 0 (i.e. Q = QJ(P) ) ,  the tube law in (3.4) cannot be used 
consistently within linear theory, since perturbations Y in the position of the jump 
point are an order of magnitude greater than those in the tube area (and also depend 
explicitly upon the sign of a,(O,t)). The following calculations are invalid in this 
exceptional case. 

When linearized, the perturbation equations (3.3) and (3.4) admit solutions with 
separable space- and time-dependence, so solutions for which u’ and a’ are both 
proportional to e(r+i‘o)t can be sought. The stability of a steady solution is determined 
by the corresponding eigenvalues (7, w ) .  These have to be determined numerically, as 
the coefficients in the governing linearized equations (3.3) and (3.4) depend on z. 

3.2. Numerical method 
The governing equations may be reformulated as a set of ordinary differential 
equations with four independent variables u‘, a‘, a: and a:,, which are written as 
Re (Z,(x) e(r+iw)t), i = 1 , 2 , 3 , 4  respectively, where Re denotes real part. Then the 
linearized versions of (3.3) and (3.4) become 

2, = - (a,, Z, + (7 + iw + u,,) Z, + u, Z,)/a,, 

2, = z,, 
2, = z,, 
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and the linearized boundary conditions (3.5)-(3.8) may be rewritten as 

BU(7, w )  z(0) = 0, 

BD(7, w )  Z(A) = 0, 

(3.15) 

(3.16) 

where Z = (Zl, Z,, Z,, Z4)T and 

(3.17) 

(3.18) 

Equation (3.11) tells us that 2 is continuous across the separation point; the 
discontinuity in 2, a t  the jump point given by (3.13) must also be considered. 

A shooting technique is used to solve this linear, boundary-value eigenproblem. 
The solution of (3.14)-(3.18) may be expressed as 

z = AIZ(1)+A,Z(2) (3.19) 

(A,  and A ,  are complex), a combination of two linearly independent solutions 2(3), 
j = 1,2 ,  which both satisfy the upstream boundary conditions (3.15). For fixed Q,  P 
and A (which define a steady state), (3.14) is integrated downstream for some ( 7 , w )  
to find each of these solutions, and then the complex 2 x 2 matrix 

D(7, w )  = (B, Z ( l ) ( A ) ,  B, Z2)(A)) 

is calculated. Now from (3.19) and (3.20), 

B, Z(A) = B, (A , 2‘’’ ( A )  + A  2 ( 2 ) ( A ) ) ,  

= DA, 

(3.20) 

(3.21) 

(3.22) 

where A = (A1,A,JT. Therefore (7, w )  are eigenvalues of (3.14)-(3.18) provided that 
the downstream boundary conditions (3.16) are satisfied, i.e. if, and only if, for non- 
trivial A 

d ( 7 , w )  = det (0) = 0. (3.23) 

Therefore, by seeking the zeros of d over the complex plane, either by locating the 
intersections of the loci of Re (d )  = 0 and Im (d )  = 0, or by locating the minima of 
Id(, the eigenvalues corresponding to a given steady solution may be determined. 
An eigensolution is then computed by using as initial values Z(0) = Z(l)(O) + 
A,Z(”(O), where a is an eigenvector satisfying D a  = 0;  a may be arbitrarily 
normalized since the problem is homogeneous. 

A shooting method was chosen in order to avoid the inconsistencies between 
different finite-difference schemes experienced in I. Nevertheless, shooting has its 
own difficulties, which arise in calculating d ( 7 , w ) .  For example, when shooting using 
values of 7 and w which do not coincide with an eigenvalue (as is generally the case), 
the components of 2 grow very rapidly as x increases, and small errors are therefore 
quickly magnified. This occurs increasingly for larger values of A ,  7 and w.  
Inaccuracies accumulate further when d is evaluated using (3.23), as this involves 
calculating the relatively small difference of two large numbers. (Modifications of the 
method, such as parallel shooting across small subsections of [0, A ] ,  fail to alleviate 
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this problem.) Although d is generally well behaved across most of parameter space, 
there are situations in which it is impossible to calculate eigenvalues with an 
integration scheme of given tolerance and order. (In these calculations a fourth-order 
Runge-Kutta scheme from the NAG numerical library was used with a relative error 
tolerance of lo’+.) For example, when Q is near zero and P is large, so that the tube 
is substantially collapsed over most of its length, the coefficients in (3.14) become 
very large (e.g. s’(01,) = 500 if 01, = 0.098). If A = 1 ,  for example, the method breaks 
down a t  small flow rates (Q < 0.5) once P > 25. 

The large number of parameters in the problem prohibit a very extensive 
examination of parameter space. In all that  follows a restricted but hopefully 
representative domain will be considered : ql = q2 = A, = A, = 1 ,  k = 45, x = 0.2 and 
A = 1 .  

3.3. The distribution of eigenvalues 

Since (3.14)-(3.18) is a one-dimensional boundary-value problem over a finite 
domain, it has an infinite number of discrete eigenvalues; each associated 
eigensolution has a wavelength which is determined by the length of the tube. The 
eigenvalues arise either as complex-conjugate pairs or as pairs of real roots, and so 
the eigenmode corresponding to the j t h  pair is labelled by its frequency w j , j  = 0, I ,  
2 ,  etc. Thuso, = 0, and in general oi + Oforj >, 1 .  The numerical constraints described 
above prevent examination of any modes higher than the fifth, but this is not too 
severe a restriction : first, the low modes give an indication of how the higher modes 
behave ; secondly, the model is based upon a long-wavelength approximation, so it 
cannot be expected to describe the shorter-wavelength perturbations accurately, 

Let us begin the description of the distribution of eigenvalues in the complex plane 
with a simple case: Q = 0 and P positive. With these parameter values, the steady 
equations have a solution in which tube is collapsed symmetrically (such as the solid 
curve in figure 2 ) ,  the tube law and longitudinal wall tension together determining 
its shape. (This solution lies on the branch of subcritical solutions, i.e. on the solid 
curve on figure 4 ( u ) ;  the supercritical solution a t  Q = 0 has zero minimum area (see 
the dashed curve in figure 4u),  and so infinitely negative internal pressure a t  its 
midpoint, which is obviously unphysical.) With no flow through it, the elastic tube 
behaves like a stretched string : all modes are neutrally stable standing waves. With 
P = 1, the eigenvalues 7 j & i w j , j  = 0 , 1 , 2 , .  . . , all have zero real part, with o, = 0, 
o1 = 3.72, w2 = 17.63, w3 = 43.97, up = 83.28, etc. The dispersive influence of 
longitudinal wall tension is responsible for the irregular distribution of eigenvalues 
along the imaginary axis. The j t h  oscillatory mode has j half-wavelengths of area 
perturbation over the length of the tube, with each half-wavelength in antiphase 
with its neighbour. I n  what follows, the paths of these eigenvalues in the complex 
plane will be traced as the flow rate is increased, considering first fully attached flow 
(53.4) and then separated flow (83.5). 

3.4. Fully attached $ow 
Consider holding P = 1 and increasing Q from zero. The steady solutions that exist 
in this case are represented on the bifurcation diagrams in figure 4,  in which 
extremum area is plotted against flow rate. Recall from 52.1 that for 0 < Q < Q J P )  
two distinct collapsed solutions exist, represented in figure 4 ( a ) .  As Q grows from 
zero each eigenvalue corresponding to the subcritical solution moves leftwards from 
the imaginary axis. The (real) mode 0 eigenvalue moves from the origin down the 
negative real axis, reverses direction and returns to the origin as Q + Q , ;  the 
remaining eigenvalues do not leave the left-hand half-plane. Thus the subcritical 
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FIGURE 4. Bifurcation diagrams representing typical steady solutions when the flow is fully 
attached, obtained by plotting extremum tube area A ,  against flow rate Q for fixed values of 
downstream pressure ( P  = 1) and tube length ( A  = 1):  (a) two branches representing collapsed 
solutions, the solid curve corresponding to the subcritical solution and the dashed to the 
supercritical solution (cf. the solid and tightly dashed curves in figure 2);  ( b )  two branches of 
solutions with the tube dilated along its length, calculated with k = 45; the solution with Q = 9 is 
plotted on figure 2. 

collapsed solution (represented by the solid curve in figure 4a)  is neutrally stable 
when Q = 0 and Q = Q,, and stable otherwise. On the other hand, the supercritical 
collapsed solution (the dashed curve in figure 4a)  is unstable for 0 < Q < Q,, as a 
positive real eigenvalue which originates from infinity moves in towards the origin 
of the complex plane as Q increases from zero ; it also reaches the origin as Q --f Q,. The 
stable subcritical solution meets the unstable supercritical solution at  the turning 
point (Q = Q,) in the bifurcation diagram in figure 4 ( a ) ;  this is a saddle-node 
bifurcation. For Q, < Q < Qb no steady solutions exist, and then at  Q = Qb another 
saddle-node bifurcation occurs as two dilated solutions appear, as shown in figure 
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FIQURE 5 .  The (&,P)-parameter plane in the case A = 1, k = 45, x = 0.2 and A, = A, = v1 = 7, = 1. 
(a) The neutral curves corresponding to modes 2 (solid), 3 (tightly dashed) and 4 (loosely 
dashed) ; the steady solution at a given point in the plane is linearly unstable to any one of these 
modes if it  lies above or within the corresponding neutral curve. The frequencies of the neutrally 
stable oscillations are marked along each curve. Shown as solid lines in (a) are Q = Q,(P) 
(separating steady solutions which are collapsed along their length from those dilated at  their 
upstream end) and Q = &,(P) (no steady collapsed solutions exist to the right of this curve). 
Contours of constant A ,  (tube minimum area, tightly dashed curves) and constant X ,  (the 
separation point, loosely dashed curves) are also marked. 

4 ( b ) .  The eigenvalue distribution follows a similar pattern as before, with both 
solutions being neutrally stable at the turning point ; the shorter (dashed) branch of 
solutions has an unstable mode 0 eigenvalue for Qb < Q < Qa, and is neutrally stable 
again a t  Q = Q,, while the longer (solid) branch of dilated solutions remains stable 
as Q increases from the bifurcation point. 
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3.5. Separated $ow 
As was described in $2.2, when there is energy loss in the tube through flow 
separation, then for fixed downstream transmural pressure P > 0 a unique steady 
solution exists for 0 < Q < Q,(P). Once again the eigenvalues can be followed in the 
complex (~,w)-plane as the flow rate is increased from zero for a fixed value of P .  
When Q = 0 all the eigenvalues lie on the imaginary axis (see §3.3), and for small Q 
these all move into the left-hand half-plane. A real eigenvalue (e.g. 7,) cannot become 
positive for larger Q, as a divergent bifurcation would imply the existence of a 
second, steady solution of the governing equations, which is known not to exist. If 
P is small (less than about 6.2 for the values of A ,  x, etc., considered here), then for 
0 < Q < Q,(P) all the eigenvalues with an imaginary part remain in the left-hand 
half-plane also. Thus the steady solution remains stable for these values of Q and P .  
If P is slightly larger, on the other hand (between about 6.2 and 12.4), then as Q 
increases from zero the mode-2 eigenvalue moves first from T = 0 into T < 0, and then 
reverses direction and enters the right-hand half-plane. As it crosses the imaginary 
axis (i.e. as r2 passes through 0) ,  the steady state undergoes a Hopf bifurcation and 
becomes unstable to a mode-2 oscillation with frequency w2. As Q increases further, 
the mode-2 eigenvalue returns again to T < 0, and the steady state regains stability. 
The boundary of the region of ( Q ,  P)-parameter space for which the steady state is 
linearly unstable to a mode-2 oscillation (i.e. the locus T~ = 0) has been calculated for 
P < 100, and is plotted as the solid line in figure 5(a ) .  

For larger values of P, the eigenvalues corresponding to the third- and fourth- 
order modes may also cross the imaginary axis for certain ranges of flow rate, making 
the tube unstable to these higher-mode oscillations as well. The neutral stability 
curves of these modes, the loci r j  = 0,j = 3,4  have also been plotted on figure 5 (a) .  
It is clear from figure 5 (a )  that the steady solutions are linearly stable for small Q or 
small P .  Notice that there are regions of parameter space in which as many as three 
modes are unstable simultaneously. (Mode-5 instabilities were also identified for 
large Q and P, but since w5 is so large accurate calculation of r5 = 0 was not possible.) 
On figure 5 (a )  the (dimensionless) frequency of the neutrally stable oscillations is 
indicated a t  points along each neutral curve. Each mode oscillates in a distinct 
frequency band: modes 2, 3, and 4 have frequencies in the range 10-25, 25-60 and 
50-110 respectively. 

The shape of the neutral curves is clearly influenced by the behaviour of the steady 
solutions across (Q, P)-space, which is represented in figure 5(b). The two solid lines 
in this figure are Q = Qj(P) and Q = Q,(P). At points between these curves the tube 
has a jump point Y,, somewhere along its length. Notice that the discontinuity in the 
tube law manifests itself as discontinuities in the gradient of a neutral curve where 
it intersects Q = QJ(P) ; this is apparent as a bulge along the lower left portion of 
r2 = 0. The ‘kinks’ in r3 = 0 and rP = 0 as each curve crosses Q = Qj(P) arise from a 
combination of this discontinuity with the strong nonlinearity of the steady solution, 
which is responsible for a similar kink (with Q < QJ(P)) in the contour A ,  = 0.1 in 
figure 5 ( b ) .  

3.6. The nature of the oscillations 
The tightly dashed curve in figure 3 shows the steady tube shape ao(x) when P = 8 
and Q = 1.556, a situation in which the tube is neutrally stable to a mode-2 
oscillation. Notice that a,(.) shows a definite asymmetry; this is reflected in the 
shape of the amplitudes of the perturbation area, velocity and pressure, which are 
plotted as functions of x in figure 6. Notice also the discontinuous perturbation 
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FIQURE 6. The amplitudes of (a) the area, ( b )  the velocity and (c) the pressure of the marginally 
stable mode-2 eigensolution of frequency o = 9.74, which exists when P = 8, &, = 1.556, and all 
other parameters as in figure 5. The corresponding steady state is shown as the tightly dashed curve 
in figure 3. 

pressure gradient across the separation point X,. The two-humped shape of this 
mode-2 oscillation is obvious. Whereas the neutrally stable mode-2 oscillation which 
exists when Q = 0 is symmetric, with the two halves of the tube vibrating exactly out 
of phase, in this case the phase of the eigensolution increases slightly along each half 
of the tube, implying that the crests of the perturbations will move upstream. 

The form of the oscillation may be visualized more clearly if the size of the 
infinitesimal perturbation is exaggerated and is superimposed upon the steady state ; 
their sum is plotted as a function of space and time in figure 7. The oscillating path 
of the separation point, taken here to be the point of minimum area, is indicated by 
a wavy curve (which should of course be almost exactly straight). This figure is 
presented to demonstrate the mechanism of self-excited oscillations proposed in 5 5.2 
of I : as the separation point moves downstream, an increasing proportion of the flow 
along’ the tube becomes attached, and this results in a wave of high pressure 
propagating downstream and a low-pressure wave moving upstream ; the former is 
reflected at the junction with the downstream rigid tube, forcing the area in the 
downstream half of the collapsible tube to increase ; this causes the constriction to 
diminish and the separation point to move upstream. The reverse process then 
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FIGURE 7. The area perturbation in figure 6 is artificially amplified and superimposed upon the 
steady state, and then plotted as a function of space and time over two periods; the position of the 
moving separation point X,(t)  is marked with a solid line. 

begins, with a low-pressure wave moving downstream, ultimately causing the 
separation point to move downstream once more. 

This mechanism provides a possible explanation of the absence of any unstable 
mode- 1 oscillations. Since these are disturbances with only a single half-wavelength 
along the length of the tube, the pressure and area gradients across the separation 
point will generally be smaller than with higher modes. Longitudinal motion ofX will 
thus be smaller, and hence mode-1 perturbations will not be capable of drawing 
sufficient energy from the flow to become unstable. 

4. Weakly nonlinear analysis 
It was shown in $3.5 that if the flow in the tube separates, then for suitable 

parameter values a Hopf bifurcation occurs as either the flow rate Q, or the 
downstream transmural pressure P ,  is varied through some point (Qo, Po) on a neutral 
curve corresponding to mode j, j = 2,3,4. In this section the nonlinear terms of 
(3.3)-(3.8) will be used to determine whether such a bifurcation is sub- or 
supercritical. 

Consider a vector in the (Q ,  P)-plane which passes through (Qo, Po) ; for the moment 
its direction is assumed to be arbitrary. To determine the nature of the mode-j 
oscillation a t  points a small distance p-po along this vector from (Qo,P0), the 
following expansions are made in powers of a small quantity E (a measure of the 
amplitude of the perturbation) of the conventional Stuart-Watson type : 

p = p, + e2p2 + W3),  (4.1) 
qY(q t )  = s ( ~ ( x )  A ( T )  eiwjot + c.c.) 

+ ~ ~ ( # ~ ~ ( ~ ) A ~ ( T ) e ~ ~ ~ r o ~ + c . c .  +#,,(x)IA(T)I2) 
+ ~ ~ ( # ~ ~ ( z ) A ~ ( T ) e ~ ~ ' + o ~ + # ~ ~ ( x )  d(T)eiW~ot+c.c.)+O(s4), (4.2) 

where #' = ( a ' , ~ ' ) ~  (see (3.1) and (3.2)) and the functions q$ z (a,,uJT, i = 1,22,20, 
etc., are to be calculated. An overbar will be used to denote complex conjugate (c.c.). 
oio is the frequency of the linear mode-j oscillation at (Qo, Po). A(T) is an 0(1) complex 
function of a slow time T = s2t, its real and imaginary parts represent slow temporal 
variations in the amplitude and phase of the perturbation; d ( T )  depends on A and 

21-2 
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(AI2A. #1 is the neutrally stable fundamental eigensolution (calculated in §3), #,, 
represents a distortion to the mean flow generated by quadratic nonlinearities, #22 

and & are harmonics of the fundamental perturbation, and #31 is a distortion of this 
fundamental. 

In varying Q or P near the bifurcation point according to (4.1), the steady solution 
changes from ao(x;po)  = E,(x) (a tilde will denote that a quantity is to be evaluated 
at  p = po) to 

(4.3) 

(4.4) 
aa, 
aP 

where 

etc. For completeness a steady, separated solution will be considered in which the 
tube is dilated a t  its upstream end and collapsed downstream (e.g. the loosely dashed 
curve in figure 3), so that it has a jump point % and a separation point 2, (see $2.2) ; 
it is an elementary matter to apply this discussion to the simpler case. 

Substituting (4.1)-(4.3) into the nonlinear equations for time-dependent per- 
turbations to steady flow (3.3)-(3.8), a succession of boundary-value problems are 
recovered at  increasing orders in e. These will be complicated by the jump conditions : 
the steadx-state area dio(x) has discontinuities in its third and fourth x-derivatives at  

and X ,  respectively, and these have an increasing influence on the lower 
derivatives of the perturbations at higher orders in e. In addition, the O ( 2 )  and O(e3) 
perturbations depend on whether the separation point is chosen to be the point of 
minimum area or of maximum velocity. Results will be presented for each case. The 
details of the jump conditions are given in Appendix B. 

At  O(E) ,  two sets of equations are obtained, one the complex conjugate of the other, 
each equivalent to the original linear stability problem that was the subject of $3. 
This system of equations may be represented succinctly as 

o ? . o , p ( 4  = - (x; Po), 

(4.5) 1 (L-iwjol)#l = 0, 

J+l = S#l = 0, 
B o G q o )  41 = BA(iW,O) 41 = 0, 

where I is the identity matrix. The linear differential operator L (from (3.3) and (3.4)) 
is written as 

L = (  - az(.ii,* ) 
- % ( 9 ’ @ 0 ) *  ) +a axsz 

and the boundary condition operators (from (3.5)-(3.8)) are 

(4.7) 

J and S (in 4.5) refer to the jump conditions at  x = 8 and x = z,, which were shown 
in (3.11)-(3.13) to be respectively 
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At second order in E ,  three boundary-value problems emerge. First, taking all the 
terms proportional to A2 e2i@’fot gives 

(4.10) 

Note how the quadratic forcing terms on the right-hand sides of (4.10) match the 
right-hand sides of (3.3)-(3.8). The corresponding nonlinear jump perturbations, J422 
and S#,,, are given in Appendix B. The second set of equations, those terms 
proportional to A2e-2i@’jot, is simply the complex conjugate of those above. The third 
set consists of real functions, which arise from taking all terms proportional to IAI2 : 

0 
Bo(o) 420 = (- (1 + 2r1) U l ( O )  a1(0) 

(4.1 1) 

J+,, and S&, are given in Appendix B. Now from the linear stability calculations it 
is known that in general the homogeneous problem 

(L-iD I)# = 0 ,  Bo(ii2) 4 = 0 ,  BA(iD) 4 = 0 ,  J4 = S4 = 0 (4.12) 

has a non-trivial solution only when D = q0. (The exceptional case, when two modes 
become unstable simultaneously, will be examined in $ 5 . )  Thus each of the 
inhomogeneous boundary-value problems (4.10) and (4.1 I) has a unique solution. 
These can be calculated with a shooting method similar to that described in $3.2 : $22 

and 420 are expressed as the sum of an arbitrary inhomogeneous solution (satisfying 
the inhomogeneous upstream boundary and jump conditions) and a suitable linear 
combination of Zl and Z2 (see 3.19), chosen such that the sum satisfies the 
inhomogeneous downstream boundary conditions. 

At 0(c3) two further boundary value problems are obtained. Only one of these need 
be considered, however. Taking all terms proportional to ei@jot, one finds 

(4.13) 

The components of F are determined from the nonlinear terms in (3.3) and (3.4) : 
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the inhomogeneous contributions to the boundary conditions (from (3.5)-(3.8)) are 

(4.15) 1 GI = - [(I + 271) ((% u20 + 
G 2  = 

u 2 2 )  A I A 1 2  +ul s 0 , p p 2  A )  +’l u1 ATlz-O, 

u20+a1 u 2 2 ) A 1 A 1 2 + u 1  ‘ 0 , p p 2 A )  +’2 u1 AT1z-A ; 

J#31 d and S$,, d are given in Appendix B. 
To ensure that the forcing terms in (4.14) and (4.15) give rise to an O(1) 

eigensolution, so that the expansion (4.2) remains uniformly asymptotic for T = 
O ( i ) ,  these inhomogeneous terms must satisfy a solvability condition. This is 
obtained by calculating the eigensolution #of the adjoint operator Lt; the details of 
this procedure are described in Appendix C. Using the inner product ( . ) defined by 
(C l), the adjoint eigensolution is defined so that the boundary and jump condition 
terms vanish in 

(4.16) 

where R($t, 4,) is a quadratic function related to L (see C 5). Now (4.13) will have a 
bounded solution provided #t is also adjoint to #31, i.e. provided (4.16) is satisfied 
with all the inhomogeneous terms in (4.13) substituted : 

(#, F) = d ( [ R ] ; -  [R];;’- [R]5+). (4.17) 

This equation may be shown to reduce to an equation for the complex amplitude 

HoAT = -H1p2A-H2IAl2A (4.18) 

(recall that p ,  is the independent bifurcation parameter given in (4.1)), where the 
coefficients Ha,  H ,  and H ,  are derived from boundary conditions and integrals 
involving the first-order eigensolution, its adjoint and the solutions of the second- 
order boundary -value problems. Expressions for these coefficients are presented in 
Appendix D ; note that substantial contributions arise from the jump and separation 
points. Using (D 1) and (D 2), 

t f -  Po+ 
(bt ,  L4J = <L+#t> 41) + [RI;:- [RI& [Ripob-' 

YO- 

A ( T ) ,  

Ha = flO(ift? 411, H ,  = H1(4+, $1 ; p )  (4.19) 

and a2 = HM+’t ,  91,42)> (4.20) 

where the product terms in (D 3) are given by 

(4.21) 

There is a substantial amount of algebra and computation required in the 
evaluation of these coefficients. While there is no simple way to confirm the accuracy 
of the calculated values of H ,  (short of numerical solution of (2.3) and (2.4)), there 
is fortunately a simple check on the accuracy of Ha and H ,  since the linear term in 
(4.18) is related to quantities that can be calculated independently using the results 
of $3, as the following heuristic argument shows. In  the expansion (4.2) the time- 
dependent part of the mode-j linear eigensolution e(Tj+i”’j) has effectively been 
replaced by A(T)  eiojot. If one writes A(!?’) = r(T) eie(T)t, then r(T) x eTjt and B(T) x 
(u,-q0) t .  Now since from (4.1) p = p o + ~ * p 2 ,  7&) and q(p) may be expanded as 

I {Ul, v,) = u, %a + a1 v22, 
[u,, w,, wl]  = (u, w, @I+ u1 g, w, +a, w1 2 0 1 ) .  

(4.22) 
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where the subscript 0 denotes evaluation a t  p = pa, so that 

and so from (4.18) at leading order 

(4.23) 

(4.24) 

Since the choice of the direction of the vector parameterized by p is arbitrary, it may 
be chosen to be tangent to the neutral curve at  (Qo,Po). The eigenvalue r,+io, 
corresponding to parameter values along this vector follows a path which is 
tangential to the imaginary axis, i.e. dr,/dp vanishes when p = pa, and from (4.24) 
the real part of H J H ,  vanishes there also. This and similar checks have been 
confirmed. 

Suppose now that p is normal to the neutral curve, passing into the (Q ,  P)-domain 
in which mode j is unstable, so that dr,/dp > 0. Then defining p = -Re (HJH, )  pz, 
the real part of (4.18) may be written 

?: = ~ ~ - 1 ~ 3 ,  (4.25) 

a standard normal form equation for a Hopf bifurcation, where 1 (the Landau 
constant) is the real part of H2/Ho.  If 1 > 0 then the bifurcation is supercritical, and 
as p increases the steady solution becomes unstable to a stable mode-j oscillation of 
non-zero amplitude. Otherwise, if 1 < 0 then the linearly stable steady solution in the 
neighbourhood of the neutral point coexists with an unstable nonlinear oscillation, 
and the bifurcation is sub-critical. 

The Landau constant in (4.25) has been calculated along the neutral curves of 
modes 2 and 3 for P < 30; it is not possible to calculate 1 either for larger values of 
P or for those modes with higher frequencies, because of the limited accuracy of the 
numerical solutions of the linear stability problem. The sign of 1 (calculated assuming 
X = X,) is indicated in figure 8(a ) ,  where the mode-2 and -3 neutral curves have been 
plotted with solid lines if 1 is positive and dotted lines if 1 is negative ; the variation 
of I along each neutral curve is shown in more detail by the solid lines in figures 8 (6)  
and 8 ( c )  for modes 2 and 3 respectively. The dotted curves in these two graphs show 
the corresponding values of 1 calculated assuming that the separation point is the 
point of maximum velocity Xu. Clearly the predictions of the weakly nonlinear 
theory are not strongly dependent on the assumed position of the separation point. 
Of far greater significance is the form of the model tube law (2.1). Recall that the 
linear stability calculations are not valid at those points where the neutral curves 
intersect Q = Q,(P) (marked as A ,  B and C on figure 8), and across such points the 
neutral curves have discontinuities in gradient and curvature. Similarly, I has jumps 
in gradient and curvature, although over a much more rapid scale. This behaviour 
is an artefact of the tube law, and I is therefore unlikely to be physically meaningful 
in neighbourhoods of these points. 

Elsewhere, however, both modes arise predominantly through supercritical Hopf 
bifurcations, although each has a region of subcritical behaviour near the point (ii) 
on figure 8 ( a )  where the two neutral curves intersect. Where the bifurcation is 
supercritical the neutral curve bounds a domain of parameter space in which the 
steady state is stable to linear and weakly nonlinear perturbations. Where it is 
subcritical, hysteresis between the stable steady state and a stable nonlinear 
oscillation can in general be anticipated. To determine whether oscillations develop 
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FIGURE 8. (a) Two neutral curves from figure 5 are plotted showing the regions in which oscillations 
arise sub- (dotted lines) or supercritically (solid lines) as the steady state becomes unstable to 
modes 2 or 3. Points along each neutral curve are parameterized by variables sz and s8 (sz = .s3 = 0 
when P = 30 and Q is small, and s2 = s8 = 1 when P = 30 and Q is large), and the mode-2 and 
mode-3 Landau constants are plotted as functions of each in (a) and ( c )  respectively. The solid lines 
in ( b )  and (c) correspond to X = X,, the dotted lines to X = X , .  A ,  B and C mark the points of 
intersection of the neutral curves and Q = Q,(P).  ( i )  and (ii) label the points of intersection of the 
two neutral curves. 

sub- or supercritically a t  the points at which 1 = 0 requires fifth-order terms in (4.25), 
which is beyond the scope of this study. However, these calculations now provide the 
foundation for the study of mode interactions, which is pursued below. 

5. Mode interactions: a double Hopf bifurcation 
The neutral curves of two different modes may cross at particular points in the (&, 

P)-plane (e.g. points (i) and (ii) in figure 8a). These are codimension-2 bifurcation 
points at which two Hopf bifurcations occur simultaneously, and provide a valuable 
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opportunity for analytical treatment of the local dynamics. Of course only a small 
number of such points can be examined, and the results will be dependent on the 
parameter values chosen. It is hoped, however, they will provide a good flavour of 
more global dynamical behaviour. 

Let (Qo, Po) be a point a t  which modes 2 and 3, say, become unstable. Two non- 
parallel vectors in (Q,P)-space may be chosen which both pass through this 
bifurcation point, and let p-po and v-uo be the distance along each from (Qo, Po). 
Then expansions similar to (4.1) and (4 .2 )  can be made: 

AE(T) #it)(x) e2iW2t+Ai(T) #!$(x) e2iwat + C.C. 

+ IA2(T) 12#%(x) i- IA3(T) 12#%(x) 
+ A , A ,  #r) ei(w*+wa)t +A2A- 3 2  @(-) ei(wz--w,)t + C.C. 

+ 2 

+ ~ ~ ( ~ , ( T ) # ~ ~ ) ( s ) e ~ ~ a ~ + 5 ; 4 , ( T ) # ~ ~ ) ( x )  eiwat+c.c. and additional terms) 

+ o(E4). (5.3) 
As before #' = ( a ' , ~ ' ) ~  and w 2 , w 3  are the frequencies of the two modes a t  the 
bifurcation point. The analysis that follows requires that the two frequencies are not 
strongly resonant, i.e. that they satisfy 

mw,+nw3 =!= 0 for m , n  = 0 , 1 , 2 , 3 .  (5.4) 
As each frequency is the root of some highly nonlinear equation, (5.4) is almost 
invariably satisfied, especially to within the bounds of numerical error. (However, 
with many independent parameters in this problem apart from Q and P, a resonant 
bifurcation can undoubtedly be obtained.) A,,j  = 2,3, are complex functions of a 
slow time T = e2t, and d,(T) depends on A,, IA2I2A, and IA3I2A,. In  varying the 
parameters around the bifurcation point the steady solution is also perturbed, as in 
(4.3) : 

a O ( x ; ~ ,  v) = + ~ 2 ( ~ 2 ~ 0 , r ( ~ ) + ~ 2 ~ 0 , v ( ~ ) ) + 0 ( ~ 3 ) .  (5.5) 
These expansions are substituted into the nonlinear equations (3.3)-(3.8) governing 

perturbations to steady flow, and a sequence of linear equations is recovered at 
increasing powers of B ,  following the pattern of $4. The equations for the 
eigensolutions #I,), #${), #,j = 2 , 3 ,  follow immediately from (4.5), (4 .10)  and (4.11) 
respectively, and the adjoint eigensolutions # j ) t , j  = 1 , 2 ,  are calculated as before 
using Appendix C. However, a t  second order in 8, provided the non-resonance 
conditions (5.4) are satisfied, two additional inhomogeneous boundary-value 
problems arise : the terms proportional to A2A3ei("'zfWa) give 
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and those proportional to A2A3 ei(wz-wa)t give 

In each case the discontinuities in the eigensolutions at To and may be determined 
using Appendix B, and (5.6) and (5.7) are solved in the usual way. 

At  O(e3),  taking terms proportional to eiujt,j = 2,3, two boundary-value problems 
are obtained for #$fat,. These are of the form (4.13) but with inhomogeneous terms 
(labelled by j = 2,3) given by 

(5.9) I 
(5.10) i {ul, up} = u:”v‘,;) + 4” v22 ( 5 )  3 

[u,, v23 = { uv)vit) + u13)vi-) + G \ ~ ) v ~ )  if j = 2 
4 3 + g  + u ( 2 ) 4 - )  + +2) (+) if j = 3. 

1 v2 u1 v2 

Jump conditions are again obtained from Appendix B. 
It is from this set of equations that a pair of coupled amplitude equations can be 

derived. Following the same procedure as in $4, the adjoint eigensolutions are 
combined with the inhomogeneous equations for #d,, j = 2,3,  to obtain two 
solvability conditions. These reduce to 

Hpkl,, = -(Hi? p2 +Hi”? U2)A2-HpIA,12A2 -H$2’IA312A2, 
Hi3’A3, = -(Hi:)p2 +Hit)  V ~ ) A , - H ~ ) J A ~ ~ ~ A ~ - H ( , ~ ) J A ~ J ~ A ,  

(cf. (4.18)), where the coefficients may be expressed in terms of the functions given 
in Appendix D. Thus for j = 2,3, 

(5.12) 
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(5.13) 

(5.14) 

ur)wg) +u$3’w‘-’ +d3) (+) if j = 2 
4 3 ) , 4 )  + u ( 2 ) ~ - )  +&2)  (+) if j = 3, 

1 1 1 wl”), 

2 1 % 
1 2  1 21-2 

u1 v1 w1 
[u,, wl, wl] = (upJy’w\w + (3)+W (k) +fpwywy 

+ u $ W w i 3 ) ~ i W  + uiW.@)w(f) + a(Ww(W 

where k = 3 if j = 2 and k = 2 if j = 3. 
If the vectors parameterized by p and v are chosen such that the p-vector is 

tangential to the mode-3 neutral curve at ( Q 0 ,  Po) and the v-vector is tangential to 
the mode-2 curve, then the real parts of the terms HI: and HE) vanish (see (4.24)). 
Therefore if r,(T) is the amplitude of A,(T), j  = 2,3, (5.11) simplifies to 

(5.15) 

where p and v have been rescaled to ,ii, and ,ii3 respectively to absorb the non-zero 
growth rates, and aZ2 = -Re (Hi2)/H$2)) ,  etc. Finally each amplitude may be rescaled 
to simplify (5.15) further, by setting F2 = ~,/la,,l~, F3 = ~ ~ / l a ~ ~ l ~ ,  b = aZ3/la3,l, c = 
a3 , /~a22~  and d = f 1 according to the sign of a33. Dropping the bars, this leaves 

i, = r,(p, + T i  + bri), 
i3 = r3(p3 + cri + dr i ) .  

(5.16) 

(The coefficient of ri in the first of these equations may always be made positive by 
reversing the sense of T . )  A complete classification of solutions of (5.16) depending 
on the relative values of b,  c and d is given in $7.5 of Guckenheimer & Holmes (1986), 
following Takens (1974). 

The unsteady behaviour of the tube in the vicinity of a codimension-2 bifurcation 
point may now be analysed. There are two instances in which it has been possible to 
obtain reliable numerical estimates of the coefficients in (5.16), namely the two 
intersection points of the mode-2 and mode-3 neutral curves with P < 30, shown in 
figure 8 (a). 

Consider first the point marked (i) on figure 8(a),  with &, = 9.60, Po = 12.55, where 
the mode-2 and -3 oscillations have frequencies 10.18 and 39.55 respectively. Taking 
the separation point to be the point of minimum area (the results are not 
qualitatively altered if X = Xu), one finds that (5.16) becomes 

i2 = y2(p2 - T; - 5.02~3,  
t3 = r3(p3-o. i iT;-r;) .  

(5.17) 

A reversal of the sense of T shows this to be type Ia in the Guckenheimer & Holmes 
(1986) classification. Figure 9 ( b )  shows the steady state at  this point, and the two 
neutrally stable area perturbation amplitudes are plotted in figure 9(c). The 
asymmetry of the tube clearly influences the shape of the eigensolutions, so that they 
are both much alike across the collapsed neck at the downstream end of the tube but 
differ in wavelength across the dilated section further upstream. Representing 
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FIGURE 9. The double Hopf bifurcation point a t  Q = 9.60, P = 12.55: the mode-2 and mode-3 
interactions in a neighbourhood of the point of intersection of the two neutral curves are shown 
schematically in (a ) ;  r2 and r3 are the slowly varying amplitudes of the mode-2 and mode-3 
perturbations. The steady state at  the bifurcation point is shown in ( b ) ,  and the two perturbation 
area amplitudes are plotted in ( c ) .  

solutions of (5.17) as trajectories in the ( r2 ,  r,)-plane, the structure of the phase space 
in the neighbourhood of (Q0,P,) is shown schematically in figure 9(a). The origin 
corresponds to  the steady solution, and a non-trivial fixed point on the rp (r,)-axis 
corresponds to a mode 2(3) oscillation with frequency w 2 ( w 3 ) .  Such points arise 
through pitchfork bifurcations in ( r2 ,  r,)-space, which are equivalent to the original 
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FIQURE 10. The double Hopf bifurcation point at Q = 1.48, P = 28.16 (cf. figure 9). 

Hopf bifurcations in the phase space S of solutions of the governing equations 
(2.2)-(2.8). Since both the mode-2 and the mode-3 oscillations arise supercritically, 
the fixed points on each axis are stable. Additional supercritical pitchfork 
bifurcations in (r2,  r,)-space (corresponding to Hopf bifurcations of the periodic 
orbits in S )  occur across the two lines p3 = pJb ,  where b = 5.02, and p, = cp2, where 
c = 0.11 (see figure 9a) ,  as a further fixed point with non-zero r2 and r3 appears and 
then vanishes. This fixed point represents stable quasi-periodic motion with two 
incommensurate frequencies, i.e. trajectories in S cover the surface of a 2-torus. Such 



648 0. E .  Jensen 

behaviour should be observable within a wedge of (Q, P)-parameter space adjacent 
to the codimension-2 point ; the two pitchfork lines in figure 9 (a)  are the tangents of 
this wedge at  the bifurcation point. 

The other codimension-2 bifurcation to be examined has Qo = 1.48 and Po = 28.16, 
and is point (ii) on figure 8(a) .  The calculated values of the coefficients in (5.16) are 
b = -9.82, c = 14.55 and d = 1, making this a type 111 bifurcation in the 
Guckenheimer & Holmes (1986) classification. Again the steady state and the two 
area eigensolutions are shown in figure I0 ( b )  and (c ) .  The two frequencies in this case 
(21.06 and 31.22) are much closer in magnitude than in the previous example, and 
correspondingly the two eigensolutions bear a closer resemblance to one another. 
(Note that they are not far from a strong $resonance, but not so close for this analysis 
to be invalid.) From the bifurcation diagram in figure 10 (a )  it is clear that the mode- 
2 and mode-3 Hopf bifurcations are subcritical, and in this instance there is a wide 
domain of parameter space near (Qo,Po) in which unstable quasi-periodic motion is 
predicted. Thus, unfortunately, this third-order theory predicts none of the 
behaviour that will be observed in practice in the neighbourhood of this bifurcation 
point, as nothing can be said about the large-amplitude mode-2 and mode-3 
oscillations that can be expected to exist for neighbouring parameter values. 

6. Discussion 
6.1. Fully attached flow 

It was shown in $3.4 that when there is no energy loss in the collapsible tube, a 
steady, linearly stable, solution with the tube collapsed along its length exists 
provided the flow rate Q is sufficiently small. As Q increases beyond a critical value 
Q,, which depends on the downstream transmural pressure P, the longitudinal wall 
tension and the tube length A, this steady solution vanishes and choking is inevitable. 
For larger flow rates a steady, linearly stable dilated configuration exists. It is not 
possible to associate the loss of steady behaviour with the flow speed a t  some point 
in the tube exceeding the local wave speed, as was suggested by the experiments of 
Brower & Scholten (1975), because the dispersive effect of longitudinal wall tension 
means that there is no unique wave speed. 

This analysis is consistent with the numerical computations reported in $4.1 of 
I. With either a very small flow rate or large longitudinal tension, ensuring that 
Q < Q, in each case, a collapsed solution corresponding to a stable, ‘subcritical ’ state 
was obtained as the final steady state of an initial-value problem. Complete collapse 
of the tube at  some point along its length occurred at a larger flow rate (with 
Q, < Q < Qb). It thus appears essential to include dissipation within the tube for 
oscillatory behaviour to occur. 

6.2. Separated $ow 
In $3.5 it was demonstrated that for a particular set of parameter values ( A ,  k, x, T ~ ,  
etc.) the steady, separated solutions which exist across (Q,  P)-space are linearly 
unstable to a t  least three different modes of oscillation. Each mode consists of small 
perturbations of area, velocity and pressure with an integral number of half- 
wavelengths along the length of the tube, and each has a frequency in a distinct 
range. The domains of parameter space in which each mode is linearly unstable are 
bounded by neutral curves: a set of such curves is shown in figure 5(a). The higher- 
mode instabilities (with shorter wavelengths and higher frequencies) arise a t  larger 
values of Q and P ,  when the tube has an increasingly narrow collapsed neck at its 



Instabilities of $ow in a collapsed tube 649 

downstream end and is dilated upstream ; an example of such a state is shown in 
figure 9 (b) .  The narrowness of the neck may be estimated from figure 5 ( b ) ,  where the 
position of the separation point X ,  is shown as a function of Q and P. Roughly 
speaking, as the ‘aspect ratio ’ of the tube increases (the ratio A to A-X,) the number 
of unstable modes increases, just as occurs with Rayleigh-BBnard convection 
experiments in a box of fixed height and increasing length. This ‘aspect ratio’ 
increases with A for fixed Q and P (see 11), which is consistent with the observation 
of Bertram et al. (1990a) that the number of unstable modes increases with increasing 
tube length over a given ( Q ,  P)-range. 

At any point in parameter space only a finite number of modes will be involved in 
the fully nonlinear, unsteady behaviour of the tube, and the dynamics may then be 
represented by a vector field on a low-dimensional centre manifold. The dimension 
of this manifold increases with the ‘ aspect ratio ’ of the tube. At points where just one 
mode becomes unstable (in the neighbourhood of a neutral curve) amplitude 
equations were derived which approximate the motion in a two-dimensional phase 
plane containing a stable or unstable limit cycle ($4). At the intersection points of 
two neutral curves, where two modes become unstable simultaneously, the motion 
on a four-dimensional centre manifold was represented with a set of coupled 
amplitude equations ($5) .  In one instance it was possible to predict the existence of 
stable, quasi-periodic motion on a 2-torus. 

There are domains of parameter space in which three modes are simultaneously 
unstable. One might expect that in such cases, provided the oscillations are not 
strongly resonant, an essentially quasi-periodic motion would result, with the 
frequency spectrum having a small number of distinct contributions at different 
frequencies. In fact such three-frequency behaviour has only rarely been observed in 
experiments on nonlinear physical systems (Swinney 1983). Instead, what generally 
occurs is that as soon as a third mode becomes unstable, the frequency spectrum 
develops a broad-band structure, indicating chaotic motion ; Swinney gives references 
of experiments in which this transition to chaos has been observed. (Such a transition 
sequence was first proposed by Ruelle & Takens (1971), and it draws upon a theorem 
of Newhouse, Ruelle & Takens (1978) which says that a 3-torus, satisfying certain 
technical conditions, is not structurally stable and can be perturbed to a strange 
attractor.) Therefore, on the basis of previous experimental observations, the 
tentative postulation can be made that chaotic behaviour can be expected across at 
least some parts those regions of parameter space in which there is competition 
between three unstable modes. 

6.3. Comparison with experiment 
Unfortunately, quantitative comparison between the present theory and experiment 
is not yet possible. Of all the currently available studies, only Bertram et al. (1990a) 
recorded all the relevant parameters, and even these results do not allow direct 
comparison : first, constraints on the numerical method (see $3.2) did not allow the 
use of dimensionless tube lengths A as large as the data demand; secondly, it was 
shown in $5.3 of I1 that the model for steady flow (based on an approximation that 
the tube walls behave like thin membranes) does not describe Bertram’s experiments 
with thick-walled tubes with quantitative accuracy. In addition, there are a number 
of regions of parameter space in which the model must be regarded as primarily 
qualitative : at small flow rates (when the tube is collapsed along most of its length), 
and also in the neighbourhood of Q = Q,  (when it is nearing a completely dilated 
state), the pressure drop down the tube is significantly underestimated because of the 
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FIGURE 11. A typical experimental control space diagram from Bertram et al. (19906) (reproduced 
with permission). In  the experiments, 3, was held fixed and the behaviour at various values of 
j3e-@2 (denoted by crosses) was recorded as j3, was increased. When the point was oscillatory, the 
repetition frequency in Hz is given. Other operating point descriptions are : nf (noise-like 
fluctuations), e (collapsed tube, steady flow), o (open tube, steady flow). UN denotes unattainable 
zones. Regions of oscillation are LD or LU (low), I (intermediate) and H (high frequency). The 
parameter values used were (in Bertram's notation) 2 = 34.2d3, and Rh. 

neglect of friction (see 11); and in those regions where the separation point is very 
close to the downstream end of the collapsible segment, there are large variations in 
a over short axial distances, and the long-wavelength approximation (see 11) breaks 
down. Despite these shortcomings, however, this model qualitatively describes many 
of the significant experimental results. 

The experiments of Bertram et al. (1990~)  were performed on tubes of four 
different lengths, and with each tube the behaviour was mapped out over (p , ,  
9, -&)-parameter space for three different values of the downstream resistance (a 
tilde is used here to denote dimensional quantities). An example of their results is 
presented in figure 1 1 ;  this has been taken from Bertram et al. (1990b). Note that 
increasing 9, has essentially the same effect as increasin3 6 (although this relationship 
is nonlinear, with @, growing more rapidly with Q for larger values of p ) ,  so 
qualitative features of the (@,, P )  plane should be apparent on the (&, P )  plane (e.g. 
figure 5a).  Each vertical set of data points on figure 11 was measured by fixing the 
upstream reservoir pressure pr, and gradually increasing the chamber pressure P e .  
Following this procedure Bertram et al. (1990b) were unable to attain a wide range 
of pressures and flow rates (the lower of the zones marked UN in figure l l ) ,  since the 
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system would jump from an open state (denoted o in figure 11) along the bottom of 
such regions (with P x 30 kPa, where the thick-walled tube is on the point of 
collapse) to one with smaller 9, larger P and the tube collapsed. A qualitative 
description of this behaviour using the model for steady flow is provided in Appendix 
A ;  it is a static bifurcation phenomenon, a form of cusp catastrophe. No such 
phenomenon occurs for the parameter values used in figure 5(a ) .  

The tube is stable and collapsed (operating points marked c in figure 11) a t  small 
flow rates with P > 30 kPa. The width of the stable zone increases with P in figure 
11, but is roughly constant for P > 10 in figure 5 ( a ) :  to some extent this difference 
can be accounted for by the nonlinear relationship between Q and 9,. A variety of 
different oscillations with increasing frequency arise for increasing values of 9, and 
P ,  most of which fall into one of three well-defined frequency ranges: low (3-6 Hz, 
denoted by LU or LD in figure l l) ,  intermediate (9-12 Hz, denoted by I) or high 
(50-100 Hz, denoted by H). The three classes of oscillation can be identified with the 
distinct modes predicted by the model ; the relative sizes of the frequencies compare 
favourably with those shown on figure 5(a ) .  But, just as in 11, accurate comparison 
of parameter values is not possible: with a bending stiffness K p  = 11.1 kPa, an 
internal tube diameter Do = 13.3 mm and a longitudinal tension per unit perimeter 
T = 74.2 Nm-’, Bertram’s parameters give a velocity scale co = 3.33 ms-l, a 
lengthscale L” = 9.4 mm and so a timescale of 2.8 x lop3 s, making his observed 
frequencies orders of magnitude smaller than those predicted by the model. The 
scaling appropriate for thin-walled tubes is obviously not suitable for these 
experiments. 

The resistance of the downstream rigid tube damps the oscillations by taking 
energy from pressure waves as they are reflected a t  x = A. Experimentally, the 
regions of parameter space in which steady, collapsed flows exist decrease in size as 
y2 is decreased. Correspondingly, calculations with yz = 0.1,  and all other parameters 
as used in figure 5(a ) ,  show that decreasing the downstream resistance causes the 
tube to become unstable to a given mode of oscillation for lower values of Q and P :  
the neutral curves are shifted mostly towards the Q-axis in the (&, P)-plane. In  the 
process they suffer large but not qualitatively significant deformations, except that 
the two branches of 72 = 0 form a closed loop at large P. 

The low-frequency oscillations recorded by Bertram et al. (1990a, 6 )  fall into two 
classes, each of them highly nonlinear, large-amplitude oscillations : during an LU 
oscillation the tube remains open for the majority of the period and suddenly 
collapses and opens again ; during the LD oscillation it remains closed throughout 
most of the cycle. The former have elsewhere been referred to as ‘milking ’ oscillations 
(Bertram 1982), and involve substantial longitudinal motion of the narrowest point 
of the tube, and thus considerable motion of the separation point. It was 
demonstrated in this study that small-amplitude oscillations arise if it is assumed 
that the separation point is coincident either with the point of greatest constriction 
in the tube, or with the point a t  which the flow first experiences an axial deceleration, 
and that the resulting behaviour is only very slightly different in the two cases. These 
rather ad hoc assumptions, made for ease of analysis, may well have to be 
reconsidered in the fully nonlinear regime. Future studies should in particular assess 
the importance of hysteresis in the motion of the separation point, the condition 
found in I to be necessary for the prediction of large-amplitude oscillations. 

In addition to the oscillations with well-defined frequencies, Bertram et al. 
(1990a, b )  recorded a variety of other oscillations. Some of the ‘irregular ’ oscillations 
(not shown in figure 11) with a broad-band frequency spectrum may well be chaotic, 



652 0. E.  Jensen 

and it remains to  be determined if this behaviour ever arises (say) through the thpee- 
frequency route to chaos referred to above. ‘Noisy’ oscillations of very high 
frequency (marked nf in figure 11) occurred at moderate flow rates and high I‘, in 
ranges of parameter space in which the tube was substantially collapsed a t  its 
downstream end and flow velocities were therefore high. Bertram et al. (1990b) 
suggested that these oscillations are due to turbulent fluctuations within the tube, 
and if this is so i t  is not surprising that they cannot be predicted with this simple one- 
dimensional model. Combinations of all the above types of oscillation were 
widespread : either two modes with incommensurate frequencies gave rise to quasi- 
periodic motion (an example of which was predicted in 95); or else their interaction 
would be strongly resonant, like the ‘ two-out-of-three ’ oscillation described by 
Bertram el al. (1990a). Finally, the regions marked LD/c and LD/nf in figure 11 are 
regions of hysteresis, indicating that low-frequency oscillations arise subcritically 
nearby; this is consistent with the predictions of the model (figure 8a) ,  since mode-2 
oscillations develop subcritically in a comparable region of parameter space. 
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Appendix A. Hysteresis of the steady solutions 
The procedure followed by Bertram et al. (1990a, b)  in their experiments was to 

hold the upstream reservoir pressure p ,  fixed (see figure l), and then slowly to 
increase the external chamber pressure p,. For small p,, p ,  is sufficiently large for the 
flow rate to be large and the tube to be completely dilated. Increasing p ,  causes the 
downstream end of the tube to collapse, resulting in increased resistance to the flow 
and a reduction in Q .  Bertram et al. (1990a, b )  found that this transition from a 
dilated to  a collapsed state was not always continuous: for the range of parameter 
space that was explored, for small p ,  the change might be smooth, while for larger 
pr a substantial reduction in flow rate would occur as the tube abruptly collapsed, 
causing a large increase in pe-p,. Subsequent reduction in p ,  would result in a 
hysteretic return to  an open state. Thus quite sizeable regions of parameter space 
were ‘unattainable’ by this procedure; an example is shown as the lower of the 
regions marked UN in figure 11. (Note that the lower boundary of this zone is the 
value of p,-pz a t  which the ‘open to collapsed’ jump occurred with p ,  increasing, 
whereas the upper boundary is the critical value of p,-p, at which the tube re- 
opened with p ,  decreasing.) Although it was frequently found that the tube would 
oscillate as soon as it had collapsed, it is confirmed here that this is a static 
bifurcation of the steady solutions, as Bertram et al. (1990a) proposed. This 
argument is analogous to  the mechanism of ‘ catastrophic collapse ’ predicted by the 
lumped-parameter model of Pedley (1980). 

For fixed p,, I),, T,I~ and qz there are two expressions for the pressure drop down the 
tube, one equal to the pressure difference imposed by the external parts of the 
apparatus 

Pi-Pz = p r -  + ~ 2 )  Q2 (A 1 )  
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FIGURE 12. (a) Equations (A 1) and (A 2) plotted on a graph of pressure drop against flow rate, in a 
case in which there are three intersections at Q = Q,, i = 1,2,3; the parameters used were y1 = 1, 
ya = 10, A = 1, k = 45, x = 0.2, p ,  = 140 and p ,  = 120. (b) With p ,  fixed, p , - p ,  may increase 
discontinuously aa p ,  is increased, by an amount given by the two intersection points of the line 
p ,  = constant with each closed curve shown (the horizontal axis closes each curve). Parameter 
values used are A = 1, k = 45, x = 0.2, T~ = 1 and q2 as marked. 

(from (2.7) and (2.8)), and one corresponding to the energy dissipated through flow 
separation, which may be written as 

~ 1 - 1 7 2  = F(Q;Pe)*  (A 2) 

This quantity may be calculated using the model for steady flow, so that F = 0 if the 
tube is dilated, for example, because of the neglect of frictional pressure losses. 
Fixing p ,  and increasing p, ,  the flow rate corresponding to a given p e  is determined 
by the intersection of the parabola (A 1) (plotted on a graph of p 1  - p ,  us. &) and the 
family of curves ( A 2 )  parameterized by p, .  (Such curves were measured 
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experimentally by Conrad 1969, for example, and comparisons of a similar family 
with the model for steady flow - varying v 2  rather than p, - were made in 11.) It is 
found that if the downstream resistance is small, the intersection point of these 
curves is unique asp, is increased, and the flow rate changes continuously as the tube 
begins to collapse. However, for larger yz there is a range of p ,  for which there are 
three roots to (A 1 )  and (A 2), Q1, Qz and Q,, as illustrated on figure 12 (a).  Q2 is never 
attained by Bertram’s procedure : as p ,  is increased through some critical value, Q, 
and Q2 approach one another and then vanish (through a saddle-node bifurcation), 
and so the flow rate jumps from Q3 to Q1. Correspondingly the negative downstream 
transmural pressure p,-p, increases from p ,  - T ~  Q: (this is commonly zero, with the 
tube not yet collapsed) to p ,  - va Q: (some positive quantity, with the tube collapsed 
a t  its downstream end). The value of Q1 a t  this bifurcation point can be calculated, 
and hence the size of the zone that is ‘unattainable’ with p, increasing can be 
deduced. 

Exa,mples of such zones are plotted in figure 12 ( b )  for v2 varying between 1.5 and 
3.0, for h = 1, q1 = 1, k = 45 and x = 0.2. This hysteresis does not arise if q2 = 1, the 
value used in all the stability calculations, but the size of the zones increases rapidly 
with 7,. Since quantitative comparison with Bertram’s experiments is not possible 
(see §6.3), these are presented only to indicate that this model provides a qualitative 
description of the observations. 

Appendix B. The separation and jump-point discontinuities 
The calculations necessary to evaluate the discontinuities in the eigensolutions at 

the jump and separation points follow very similar lines, so the two cases will be 
described together. To begin, each problem is expressed in a similar form. First, 
discontinuities arise a t  the jump point from those inherent in the tube law (2.1); 
continuity of pressure demands that gradients of a absorb the jump in the gradient 
of 9 ( a )  at a = 1.  Letting 

so that 
rewritten as 

0 = 1-a, (B 1)  

increases monotonically through 0 across the jump point Y ,  (2.2) may be 

+%, = mJ) fW-4 +g(z),  (B 2) 

where g(x) represents functions which are continuous at the jump point, which may 
be ignored in what follows, H(v)  is the step function ( H ( v )  = 0 if v < 0 and H(v)  = 1 
if v > 0), and 

Similarly, discontinuities arise owing to the change in the value of the parameter x 
at the separation point X ,  which is assumed to be either X,, a t  which a, = 0, or Xu, 
a t  which ux = 0. In the former case, for example, the momentum equation can be 
written 

(B 3) F(v )  = ( l - - v ) - t - l - k v .  

;ax,, = G(u) W a x )  + 4x1 

G(u) = ( x -  1 )  UU,. 

(B 4) 

(B 5) 

where h(x) is continuous across X and 

u, and a, are now expanded in powers of 8 in the same manner as in (3.1), (3.2) 
and (4.2), but using a simpler notation : 

v(2, t )  = vo(x) + €V1(X, t )  + € 2 V Z ( X ,  t )  +e3v3(x, t )  + 0(€4). (B 6) 
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Thus v2(x, t )  represents A2w2,(x) etiWt+ ( A ( 2 ~ 2 , ( x )  +X2~22(x) e-liot, etc. P, G, and H may 
be expanded according to (B 6), so that for example 

F(v )  = F(v,) +€?IIF1(VO) + € 2 ( V 2 F ’ ( V O )  ++?J;F(v,)) 

+e3(v3B”(v0) +v1v2F”(vo) +hV:P’”(v,)) +0(e4). (B 7)  

Equations (B 2) and (B 4) are both expanded using expressions such as (B 7) to 
obtain equations for vixz and a,xxx, i = 0 , 3  at increasing powers of 8. Each of these is 
of the form 

biz2 = fo(4 H(v0) + f l ( X )  @o) +f2(x) #(?I,) + f 3 ( 4  6”(vo) (B 8) 

for some fi(z),j = 0 , 3  where S(v) = H’(v) is the delta function. Now it may easily be 
shown by integration by parts that 

&4xx13: =fo(Y,), 

and likewise with aix and X, replacing v, and Y,  respectively, so (B 9) can be used to 
determine the discontinuities in the derivatives of a,, i = 1,3, at the jump and 
separation points. The details of the algebra are omitted, and only the results that 
are relevant to the analyses in 9$4 and 5 are presented. For brevity’s sake time- 
dependence will remain suppressed, so that J h  represents J#22 or Jd20 etc. The 
complete time-dependent expansions in particular cases are readily established from 
the context in $94 and 5. However, the terms that arise at  third order that contribute 
to the growth-rate term in the amplitude equation (4.18) will be introduced; these 
result from second-order perturbations of the steady state proportional to p2, and are 
obtained simply by replacing v2 by V ~ + , U ~ I ~ ~ , ~ ,  for example. 

At  the jump point, (3.13) is recovered at  first order: 

A t  second order, the only non-zero contributions to  J#, are 

Fo+ 
[a&- = ( 3 - 2 4 7 ,  

p +  15a: 
0 4 2  

[ 9 ’ ( & o ) a 2 - ~ a 2 x z ] ~ -  = --. 

a3 and all its derivatives are discontinuous at  E, so in J#, we have 

P +  105 a: 
= ya,(a2 + p2 Go, p )  - __ - 

0 8 6  [8 ’ ( E o )  a3 - J 
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One further quantity must be calculated at this order, the jump in u3 at 8. This is 
obtained from the O ( E ~ )  contribution to the mass conservation relation (3.3) : 

iwa3+ (~oa3+gou3)x = - ~ ~ ~ a 2 + ~ 2 ~ l ~ x - ~ , ~ ~ o , , ~ l + ~ o , , ~ ~ ~ x ~  (B 13) 

(B 14) 
Integration across gives 

as required. 

contribution to S#2 is 

Po+ 
zi0[a31:+ + ii0[U3lPo- = 0 

Assuming that the separation point is the point of minimum area, the only 

There are two non-zero terms in s#,: 

If the separation point is the point of maximum velocity, S#, and S#3 are obtained 
by replacing every a on the right-hand sides of (B 15) and (B 16) with u. 

Appendix C. The adjoint eigensolution 
At a point (Q0, Po) of marginal stability, the linearized equations governing small- 

amplitude perturbations #l = (a1, uJT are given by (4.5)-(4.9). This system of 
equations is not self-adjoint, and it is necessary to calculate the adjoint eigensolution 
explicitly. The inner product (-) is defined by 

=w, (C 2) 

where overbar denotes complex conjugate. Using (C 1) and integrating the first 
equation in (4.5) by parts gives 

(C 3) 
at,+ (P, l-4) = (W, #) + [RI;: - [R12’- tRl,o- 3 

where the adjoint differential operator is 

and R(#,+l) is a quadratic function which may be written as 

R = - ~ ( . i i o a l + ~ o u l ) - ~ t ( ~ ~ ( ~ O ) a l - ~ a l x x + ~ z i o u l ) - ~ ~ a l x + ~ ~ x a l .  (C 5 )  

We must choose boundary conditions and jump conditions for the adjoint 
eigenproblem, 

(C 6) Bb#+ = Bf #t = 0, Jt4t = St#? = 0, 
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such that the terms in (C 3) involving R vanish. To determine the adjoint boundary 
conditions, one writes 

LR1; = @O, b B i ,  5-d +B,,dBf\,  5 4 1 9  (C 7 )  
i - l , 4  

where B, = (Bol,Bo2)T from (4.7) etc., and then choosing B,, = zcl(0), Bo4 = -+zl,(0), 
B,, = -u,(h) and BA4 = -$l,(A) it  is easily shown that 

(C 9) 

Bi4 = -Qoc?(A) -9 ’ (Eo)  at(h)+$L,(h).. 1 together with Bi, = d ( O ) ,  

Bi4 = Qo &(O) +s’(bo) tZt(0) -$L,(O), 

Iq, = -at@), 

To determine whether $ has any discontinuities at the separation point (C 5 )  is 
rewritten as 

R = - al[tZoZt+ 9 ’ ( G 0 )  E’-~zL,. -ul[E0 Zt++tZo a’] -a,,[$L] + al,,[$t]. (C 10) 

Since al, and al,, are continuous across xo, and @ must be chosen to be continuous 
there also. Further, by integrating both equations in (C4)  across the separation 
point, so that for example 

(C 11) 
do(X,) [zt];;: + tZ,(X0) [@]& a + -  - 0, 

it  is clear that the first two square-bracketed quantities in (C 10) vanish, and hence 
&+ and @, are discontinuous across the separation point with 

Similarly, using (C 5 )  it is easily shown that [R]Y“+ vanishes provided c?, at, 
$, are continuous across the jump point. 

now satisfies 

and Lt@ = io+, $. It is straightforward to  calculate # using the method described in 
53.2. 

and 

With this choice of boundary conditions and jump conditions, the adjoint solution 

YO- 

w, L4) = (Lvt, +), (C 13) 

Appendix D. Coefficients in the amplitude equation 
These are the expressions used in (4.19) and (5.12) : 

Hn($, 91) = [ (dal + d t u 1 )  dx+A1 dull0 +h,dtu,J,; (D 1) 
0 

Hl($t,#l;,u) = [c?(Egu,+@a,),dx+ at(x(~u1),+(9’’(d,,)E~al),)dz l 
+ (1 + 27J atu, %lo + 2T2 atu, qj, 



The shorthand [u3] = [u, u, u] ,  [u2, w] = [u, u, w] etc. has been used in (U 3). The 
products {u, v} and [u, v, w] are given in the appropriate parts of the text: (4.21) or 
(5.13) and (5.14). Equation (D 3) holds under the assumption thatX = X,; ifX = X,, 
every a in a term evaluated at  z,, should be replaced by a u. 
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